3.15 \(\int x^4 \left (2+3 x^2\right ) \sqrt{5+x^4} \, dx\)

Optimal. Leaf size=208 \[ \frac{20}{21} \sqrt{x^4+5} x+\frac{2}{3} \sqrt{x^4+5} x^3-\frac{10 \sqrt{x^4+5} x}{x^2+\sqrt{5}}-\frac{5 \sqrt [4]{5} \left (21+2 \sqrt{5}\right ) \left (x^2+\sqrt{5}\right ) \sqrt{\frac{x^4+5}{\left (x^2+\sqrt{5}\right )^2}} F\left (2 \tan ^{-1}\left (\frac{x}{\sqrt [4]{5}}\right )|\frac{1}{2}\right )}{21 \sqrt{x^4+5}}+\frac{10 \sqrt [4]{5} \left (x^2+\sqrt{5}\right ) \sqrt{\frac{x^4+5}{\left (x^2+\sqrt{5}\right )^2}} E\left (2 \tan ^{-1}\left (\frac{x}{\sqrt [4]{5}}\right )|\frac{1}{2}\right )}{\sqrt{x^4+5}}+\frac{1}{21} \left (7 x^2+6\right ) \sqrt{x^4+5} x^5 \]

[Out]

(20*x*Sqrt[5 + x^4])/21 + (2*x^3*Sqrt[5 + x^4])/3 - (10*x*Sqrt[5 + x^4])/(Sqrt[5
] + x^2) + (x^5*(6 + 7*x^2)*Sqrt[5 + x^4])/21 + (10*5^(1/4)*(Sqrt[5] + x^2)*Sqrt
[(5 + x^4)/(Sqrt[5] + x^2)^2]*EllipticE[2*ArcTan[x/5^(1/4)], 1/2])/Sqrt[5 + x^4]
 - (5*5^(1/4)*(21 + 2*Sqrt[5])*(Sqrt[5] + x^2)*Sqrt[(5 + x^4)/(Sqrt[5] + x^2)^2]
*EllipticF[2*ArcTan[x/5^(1/4)], 1/2])/(21*Sqrt[5 + x^4])

_______________________________________________________________________________________

Rubi [A]  time = 0.290105, antiderivative size = 208, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25 \[ \frac{20}{21} \sqrt{x^4+5} x+\frac{2}{3} \sqrt{x^4+5} x^3-\frac{10 \sqrt{x^4+5} x}{x^2+\sqrt{5}}-\frac{5 \sqrt [4]{5} \left (21+2 \sqrt{5}\right ) \left (x^2+\sqrt{5}\right ) \sqrt{\frac{x^4+5}{\left (x^2+\sqrt{5}\right )^2}} F\left (2 \tan ^{-1}\left (\frac{x}{\sqrt [4]{5}}\right )|\frac{1}{2}\right )}{21 \sqrt{x^4+5}}+\frac{10 \sqrt [4]{5} \left (x^2+\sqrt{5}\right ) \sqrt{\frac{x^4+5}{\left (x^2+\sqrt{5}\right )^2}} E\left (2 \tan ^{-1}\left (\frac{x}{\sqrt [4]{5}}\right )|\frac{1}{2}\right )}{\sqrt{x^4+5}}+\frac{1}{21} \left (7 x^2+6\right ) \sqrt{x^4+5} x^5 \]

Antiderivative was successfully verified.

[In]  Int[x^4*(2 + 3*x^2)*Sqrt[5 + x^4],x]

[Out]

(20*x*Sqrt[5 + x^4])/21 + (2*x^3*Sqrt[5 + x^4])/3 - (10*x*Sqrt[5 + x^4])/(Sqrt[5
] + x^2) + (x^5*(6 + 7*x^2)*Sqrt[5 + x^4])/21 + (10*5^(1/4)*(Sqrt[5] + x^2)*Sqrt
[(5 + x^4)/(Sqrt[5] + x^2)^2]*EllipticE[2*ArcTan[x/5^(1/4)], 1/2])/Sqrt[5 + x^4]
 - (5*5^(1/4)*(21 + 2*Sqrt[5])*(Sqrt[5] + x^2)*Sqrt[(5 + x^4)/(Sqrt[5] + x^2)^2]
*EllipticF[2*ArcTan[x/5^(1/4)], 1/2])/(21*Sqrt[5 + x^4])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 25.6711, size = 206, normalized size = 0.99 \[ \frac{x^{5} \left (21 x^{2} + 18\right ) \sqrt{x^{4} + 5}}{63} + \frac{2 x^{3} \sqrt{x^{4} + 5}}{3} + \frac{20 x \sqrt{x^{4} + 5}}{21} - \frac{10 x \sqrt{x^{4} + 5}}{x^{2} + \sqrt{5}} + \frac{10 \sqrt [4]{5} \sqrt{\frac{x^{4} + 5}{\left (\frac{\sqrt{5} x^{2}}{5} + 1\right )^{2}}} \left (\frac{\sqrt{5} x^{2}}{5} + 1\right ) E\left (2 \operatorname{atan}{\left (\frac{5^{\frac{3}{4}} x}{5} \right )}\middle | \frac{1}{2}\right )}{\sqrt{x^{4} + 5}} - \frac{\sqrt [4]{5} \sqrt{\frac{x^{4} + 5}{\left (\frac{\sqrt{5} x^{2}}{5} + 1\right )^{2}}} \left (90 \sqrt{5} + 945\right ) \left (\frac{\sqrt{5} x^{2}}{5} + 1\right ) F\left (2 \operatorname{atan}{\left (\frac{5^{\frac{3}{4}} x}{5} \right )}\middle | \frac{1}{2}\right )}{189 \sqrt{x^{4} + 5}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**4*(3*x**2+2)*(x**4+5)**(1/2),x)

[Out]

x**5*(21*x**2 + 18)*sqrt(x**4 + 5)/63 + 2*x**3*sqrt(x**4 + 5)/3 + 20*x*sqrt(x**4
 + 5)/21 - 10*x*sqrt(x**4 + 5)/(x**2 + sqrt(5)) + 10*5**(1/4)*sqrt((x**4 + 5)/(s
qrt(5)*x**2/5 + 1)**2)*(sqrt(5)*x**2/5 + 1)*elliptic_e(2*atan(5**(3/4)*x/5), 1/2
)/sqrt(x**4 + 5) - 5**(1/4)*sqrt((x**4 + 5)/(sqrt(5)*x**2/5 + 1)**2)*(90*sqrt(5)
 + 945)*(sqrt(5)*x**2/5 + 1)*elliptic_f(2*atan(5**(3/4)*x/5), 1/2)/(189*sqrt(x**
4 + 5))

_______________________________________________________________________________________

Mathematica [C]  time = 0.211888, size = 105, normalized size = 0.5 \[ \frac{1}{21} \left (\frac{x \left (7 x^{10}+6 x^8+49 x^6+50 x^4+70 x^2+100\right )}{\sqrt{x^4+5}}+10 \sqrt [4]{-5} \left (2 \sqrt{5}-21 i\right ) F\left (\left .i \sinh ^{-1}\left (\sqrt [4]{-\frac{1}{5}} x\right )\right |-1\right )+210 (-1)^{3/4} \sqrt [4]{5} E\left (\left .i \sinh ^{-1}\left (\sqrt [4]{-\frac{1}{5}} x\right )\right |-1\right )\right ) \]

Antiderivative was successfully verified.

[In]  Integrate[x^4*(2 + 3*x^2)*Sqrt[5 + x^4],x]

[Out]

((x*(100 + 70*x^2 + 50*x^4 + 49*x^6 + 6*x^8 + 7*x^10))/Sqrt[5 + x^4] + 210*(-1)^
(3/4)*5^(1/4)*EllipticE[I*ArcSinh[(-1/5)^(1/4)*x], -1] + 10*(-5)^(1/4)*(-21*I +
2*Sqrt[5])*EllipticF[I*ArcSinh[(-1/5)^(1/4)*x], -1])/21

_______________________________________________________________________________________

Maple [C]  time = 0.072, size = 192, normalized size = 0.9 \[{\frac{2\,{x}^{5}}{7}\sqrt{{x}^{4}+5}}+{\frac{20\,x}{21}\sqrt{{x}^{4}+5}}-{\frac{4\,\sqrt{5}}{21\,\sqrt{i\sqrt{5}}}\sqrt{25-5\,i\sqrt{5}{x}^{2}}\sqrt{25+5\,i\sqrt{5}{x}^{2}}{\it EllipticF} \left ({\frac{x\sqrt{5}\sqrt{i\sqrt{5}}}{5}},i \right ){\frac{1}{\sqrt{{x}^{4}+5}}}}+{\frac{{x}^{7}}{3}\sqrt{{x}^{4}+5}}+{\frac{2\,{x}^{3}}{3}\sqrt{{x}^{4}+5}}-{\frac{2\,i}{\sqrt{i\sqrt{5}}}\sqrt{25-5\,i\sqrt{5}{x}^{2}}\sqrt{25+5\,i\sqrt{5}{x}^{2}} \left ({\it EllipticF} \left ({\frac{x\sqrt{5}\sqrt{i\sqrt{5}}}{5}},i \right ) -{\it EllipticE} \left ({\frac{x\sqrt{5}\sqrt{i\sqrt{5}}}{5}},i \right ) \right ){\frac{1}{\sqrt{{x}^{4}+5}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^4*(3*x^2+2)*(x^4+5)^(1/2),x)

[Out]

2/7*x^5*(x^4+5)^(1/2)+20/21*x*(x^4+5)^(1/2)-4/21*5^(1/2)/(I*5^(1/2))^(1/2)*(25-5
*I*5^(1/2)*x^2)^(1/2)*(25+5*I*5^(1/2)*x^2)^(1/2)/(x^4+5)^(1/2)*EllipticF(1/5*x*5
^(1/2)*(I*5^(1/2))^(1/2),I)+1/3*x^7*(x^4+5)^(1/2)+2/3*x^3*(x^4+5)^(1/2)-2*I/(I*5
^(1/2))^(1/2)*(25-5*I*5^(1/2)*x^2)^(1/2)*(25+5*I*5^(1/2)*x^2)^(1/2)/(x^4+5)^(1/2
)*(EllipticF(1/5*x*5^(1/2)*(I*5^(1/2))^(1/2),I)-EllipticE(1/5*x*5^(1/2)*(I*5^(1/
2))^(1/2),I))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \sqrt{x^{4} + 5}{\left (3 \, x^{2} + 2\right )} x^{4}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(x^4 + 5)*(3*x^2 + 2)*x^4,x, algorithm="maxima")

[Out]

integrate(sqrt(x^4 + 5)*(3*x^2 + 2)*x^4, x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left ({\left (3 \, x^{6} + 2 \, x^{4}\right )} \sqrt{x^{4} + 5}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(x^4 + 5)*(3*x^2 + 2)*x^4,x, algorithm="fricas")

[Out]

integral((3*x^6 + 2*x^4)*sqrt(x^4 + 5), x)

_______________________________________________________________________________________

Sympy [A]  time = 4.55302, size = 78, normalized size = 0.38 \[ \frac{3 \sqrt{5} x^{7} \Gamma \left (\frac{7}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{7}{4} \\ \frac{11}{4} \end{matrix}\middle |{\frac{x^{4} e^{i \pi }}{5}} \right )}}{4 \Gamma \left (\frac{11}{4}\right )} + \frac{\sqrt{5} x^{5} \Gamma \left (\frac{5}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, \frac{5}{4} \\ \frac{9}{4} \end{matrix}\middle |{\frac{x^{4} e^{i \pi }}{5}} \right )}}{2 \Gamma \left (\frac{9}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**4*(3*x**2+2)*(x**4+5)**(1/2),x)

[Out]

3*sqrt(5)*x**7*gamma(7/4)*hyper((-1/2, 7/4), (11/4,), x**4*exp_polar(I*pi)/5)/(4
*gamma(11/4)) + sqrt(5)*x**5*gamma(5/4)*hyper((-1/2, 5/4), (9/4,), x**4*exp_pola
r(I*pi)/5)/(2*gamma(9/4))

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \sqrt{x^{4} + 5}{\left (3 \, x^{2} + 2\right )} x^{4}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(sqrt(x^4 + 5)*(3*x^2 + 2)*x^4,x, algorithm="giac")

[Out]

integrate(sqrt(x^4 + 5)*(3*x^2 + 2)*x^4, x)